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The research on nanophotonic devices has made great progress during the past decades. It is the unremitting pursuit of
researchers that realize various device functions to meet practical applications. However, most of the traditional methods
rely on human experience and physical inspiration for structural design and parameter optimization, which usually require a
lot of resources, and the performance of the designed device is limited. Intelligent algorithms, which are composed of rich
optimized algorithms, show a vigorous development trend in the field of nanophotonic devices in recent years. The design of
nanophotonic devices by intelligent algorithms can break the restrictions of traditional methods and predict novel con-
figurations, which is universal and efficient for different materials, different structures, different modes, different wave-
lengths, etc. In this review, intelligent algorithms for designing nanophotonic devices are introduced from their concepts to
their applications, including deep learning methods, the gradient-based inverse design method, swarm intelligence algo-
rithms, individual inspired algorithms, and some other algorithms. The design principle based on intelligent algorithms and
the design of typical new nanophotonic devices are reviewed. Intelligent algorithms can play an important role in designing
complex functions and improving the performances of nanophotonic devices, which provide new avenues for the realization
of photonic chips.
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1. Introduction

The various technical challenges that traditional electronic devi-
ces have faced in recent years suggest that Moore’s law is becom-
ing increasingly difficult to maintain[1]. As a promising
successor to electronic devices, nanophotonic devices have
become the focus of optical research, and the design of devices
has always been one of the core topics of nanophotonic devices.
Traditional design methods for nanophotonic devices, which
rely on experience and physical inspiration for structural design
and parameter optimization, cannot find the best performances
of devices each time, and usually require a long calculation
period with parameter sweeps[2,3]. With the increasing demand
for device performance in practical applications, deep learning
methods, the gradient-based inverse design method, swarm
intelligence algorithms, individual inspired algorithms, and
some other intelligent algorithms have been proposed to over-
come the shortcomings of traditional design methods. These
intelligent algorithms transfer the “method orientation” to

“problem orientation,” which is more suitable for solving vari-
ous kinds of optimization problems.
Intelligent algorithms are, in many cases, practical alternative

techniques for solving varieties of challenging engineering prob-
lems[4]. Intelligent algorithms are also methods inspired by
natural phenomena or laws, and people learn and imitate natu-
ral principles and use intelligent algorithms to solve practical
problems. For example, the deep learning method, which can
realize the recognition and classification of speech and images
close to human learning behavior, may replace humans as the
operator in the optimization process; the swarm intelligence
algorithms, which simulate the behavior of animal groups in
searching for food and constantly change the search direction
through learning experience, can help people find the optimal
path. In many practical applications, intelligent algorithms
are practical techniques to deal with various challenging
problems, such as the design of widely used structures in nano-
photonic devices: photonic crystals[5], optical materials[6], etc.
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Intelligent algorithms can help us solve these design problems.
Whether it is an intricate continuous problem or a discrete prob-
lem to be optimized, intelligent algorithms can be applied under
both cases and find feasible solutions in a short time. It shows
that the avenues of designing nanophotonic devices based on
intelligent algorithms will be an important direction for the
future development of nanophotonics. Intelligent algorithms
are important core techniques for parameter tuning and com-
puter-aided design of devices, which can establish a clear and
intuitive physical scene for the device’s working principle.
The design efficiency can be greatly improved by using the
appropriate algorithm, and the best performance of the device
can be expected. Therefore, the study of intelligent algorithms
is of great practical significance to the design of nanophotonic
devices. The design of nanophotonic devices based on intelligent
algorithms will play a more significant role in improving manu-
facturing capacity and levels in future.
In this review article, the deep learning method, the gradient-

based inverse design method, swarm intelligence algorithms
[including genetic algorithm (GA), particle swarm optimization
(PSO), and ant colony algorithm (ACA)], individual inspired
algorithms [including the simulated annealing algorithm
(SAA), the hill climbing algorithm, and tabu search (TS)],
and some other algorithms [including the direct binary search
(DBS) algorithm, topology optimization, and Monte Carlo
method] are introduced from research background or concept
to applications for designing nanophotonic devices. A summary
of the intelligent algorithms and their applications for designing
nanophotonic devices is shown in Fig. 1. Corresponding appli-
cation examples of nanophotonic devices are listed under each
mentioned intelligent algorithm. The advances in the design of
nanophotonic devices using various intelligent algorithms may

bring new inspiration for further research of nanophotonic
structures and devices. Recently, our group has developed an
intelligent algorithm by combining GA and the finite element
method (FEM), and we have realized on-chip wavelength rout-
ers[7] and polarization routers[8], which are the smallest ones to
date based on optimization algorithms. We also introduce the
SAA into GA and FEM and have realized cascaded nanopho-
tonic devices of broadband filter and wavelength routers.
Based on this, more novel structures are predicted, and the
device performances will be more excellent.
This review includes seven sections. The first section is the

introduction, where we illustrate the purpose of writing this
review. The second section is about the deep learning method,
especially the artificial neural network, where the history, prin-
ciple, and applications are demonstrated. In the third section,
the gradient-based inverse design is introduced, including the
adjoint algorithm for optimizing the parameters of nanopho-
tonic devices, which is a further improvement on the gra-
dient-based inverse design method and solves the problems of
the system that follows the known laws of physics. The fourth
section focuses on swarm intelligence algorithms, introducing
GA and PSO, which have been widely used in recent years, as
well as ACA, which is often used to optimize the design of solar
devices. The fifth section is the individual inspired algorithms
including the SAA, the hill climbing algorithm, and the TS algo-
rithm, which are introduced from the aspects of concept, devel-
opment process, and application. The sixth section is some other
intelligent algorithms, including DBS, topology optimization,
and Monte Carlo method, which play an important role for
designing the multiplexer, band structures, optical imaging,
etc. The last section is the summary, which summarizes the
advantages of intelligent algorithms in designing complex

Fig. 1. Summary of intelligent algorithms and their applications for designing nanophotonic devices in this review.
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functions and improving device performance for designing
nanophotonic devices, and explains the development trend of
using intelligent algorithms, especially in the design of nanopho-
tonic devices in future.

2. Nanophotonic Devices Based on Deep Learning
Methods

In 2016, after the artificial intelligence (AI) “AlphaGo” defeated
the go world champion Lee Sedol, a terminology called “deep
learning” was then firmly printed in people’s minds[9]. In fact,
deep learning is a form of machine learning, and machine learn-
ing is a branch of AI. Machine learning is the scientific study of
algorithms and statistical models that computer systems use to
perform a specific task without using explicit instructions, rely-
ing on patterns and inference instead. However, hampered by
the poor hardware performance at that time, early machine
learning approaches such as connectionism were not suitable
for complex learning tasks, and often suffered from problems
like overfitting.
In order to get rid of these troubles, researchers try to develop

an algorithm that integrates the process of feature learning into
the process of machine learning, which is so-called representa-
tion learning. Deep learning is a typical kind of representation
learning (see Fig. 2 for the inclusion relation of these three with
AI). Deep learning experienced a long time before AlphaGo was
a blockbuster, and in the past people almost gave it up. It was not
until 2006, whenHinton et al. proposed amodel called the “deep
confidence network” that deep learning was back in the spot-
light[10]. It can be said that it is the increment of effective data,
the implementation of high-performance computing hardware,
and the improvement of trainingmethods that make deep learn-
ing play a significant role in the field of artificial intelligence. As a
kind of machine learning, the emergence of deep learning has
greatly promoted the development of artificial intelligence.
Deep learning methods are algorithms closer to human learning
behavior, so deep learning has made remarkable achievements

in many fields, such as speech recognition, image recognition,
and classification.
The core of deep learning is the design of the artificial neural

network (ANN). As the term suggests, the structure of the ANN
is based on the simulation of the neural network of the human
brain. Some of the neurons activate the messages received from
somewhere else and then pass them onto other neurons. That is
to say, deep learning methods are representation learning meth-
ods with multiple levels of representation, obtained by compos-
ing simple but non-linear modules that each transforms the
representation at one lower level into a representation at a higher
and slightlymore abstract level.With the composition of enough
transformations, complex functions can be learned[11].

2.1 Introduction to deep-learning method

In this part, the utilization in nanophotonic devices through the
deep-learning method will be introduced and illustrated. First of
all, when applying the deep learning method, a certain number
of training data need to be generated and then the quantitative
characteristics of a group of data in the form of a one-
dimensional vector x are input to the neural network. The input
information is processed in the first layer (i.e., the layer after the
input layer) and then transferred to the next layer. Taking the
neurons in the lth layer as an example (see Fig. 3), the neural
network in the lth layer has nl neurons (the number of layers,
the number of neurons in each layer, and other preset parame-
ters before training the neural system are called hyperpara-
meters). Z and A are used to represent the information before
and after processing with the activation function g = g�Z�,
respectively. Then the processing of information by neurons
in the lth layer can be expressed as follows:

Z�l� = ΘT
�l−1�A�l−1�, (1)

A�l� = g�Z�l�� (2)

Here, Θ�l−1� is an nl−1 × nl matrix. The function g is the acti-
vation function, and the commonly used non-linear activation
functions are the sigmoid function, the ReLu function, the
Tanh function, etc. When the information is transferred to
the last layer and activated, the so-called prediction value Ŷ is
obtained. After selecting the appropriate cost function, the chain
rule is used for backpropagation and the stochastic gradient
descent (SGD) algorithm is used to update the value of the
parameters (weight and bias) of each neuron in the neural net-
work, which ends a process of training. After feeding a large
number of training data, it is expected that Θ in ANN will be
updated to a value more suitable for dealing with similar prob-
lems, i.e., the cost function converges to a local minimum. By
using the test set after the training process, problems such as
underfitting and overfitting can be detected. Specifically, this
is done by calculating variance and bias, and drawing the learn-
ing curve during the testing process.
Usually, ANN can deal with two kinds of problems: regression

problems and classification problems. The time consumed to
Fig. 2. Inclusion relation of machine learning, representation learning, deep
learning, and artificial intelligence.
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train an ANN is a reference to evaluate an ANN. Also, when
evaluating the performance of a neural network in classification
problems, parameters such as precision and recall are often
introduced, even though sometimes it is necessary to trade off
these two parameters. Some ways can be used to improve the
performance. The main ways are as follows.

a. Longer training time and more training data. (Sometimes
it does not work or even makes the ANN perform worse.)

b. Select an appropriate architecture of ANNs.
c. Select an appropriate algorithm (such as the Adam algo-

rithm and dropout strategy)
d. Select the appropriate activation functions.
e. Fine tune the hyperparameters (e.g., the number of layers

and the number of neurons per layer).

Deep learning methods have been applied in many fields,
including the design of nanophotonic devices. In order to design
and evaluate a nanophotonic device, it is necessary to predict
the optical response, and the prediction is usually implemented

by solving Maxwell’s equations using dedicated numerical
methods[12], which is rather time-consuming. The trained ANN
can be used to predict the optical response quickly by forward
propagation. The trained neural network can also be used to
design nanophotonic devices with high efficiency.

2.2 Typical architectures of ANNs

In this part, typical architectures of ANNswill be introduced and
illustrated. There are several typical architectures of ANNs that
are often adopted to design and optimize nanostructures with
different functions.
Malkiel et al. trained and tested a bidirectional deep-learning

architecture with the capability of predicting the geometry of
nanostructures solely based on the far-field response of the
nanostructures, and the prediction is accurate[13]. Once this
deep neural network (DNN) is trained, the geometry of the
nanostructure can be obtained by querying the inverse network
according to the measured/expected transmission spectrum.
Then the obtained geometry is input into the direct network
after training, and the direct network calculates the predicted
transmission spectrum [see Fig. 4(a)]. When dealing with the
inverse scattering problem using neural networks, it often suf-
fers from a typical non-uniqueness problem, which makes it
rather difficult to train neural networks on a training set with
a large amount of data. Liu et al. demonstrated a tandem net-
work (TN) that tolerates both explicit and implicit nonunique
training instances [see Fig. 4(b)]. The forwardmodeling network
is trained in advance, so during the training process weights in
the pretrained forward modeling network are fixed and the
weights in the inverse network are adjusted to reduce the value
of the cost function (i.e., the error between the predicted
response and the target response). The outputs of the intermedi-
ate layerM are the designed parameters of the device. It provides
a method for training large-scale neural networks for the inverse
design of complex photonic structures[14]. Metasurfaces are ver-
satile and novel platforms for manipulating the scattering, color,
phase, or intensity of light. Lei et al. also utilized a TN to opti-
mize a metasurface in order to reduce the computational cost
significantly[15]. They proved that the metasurfaces can achieve
up to 400 times the third harmonic enhancement after
optimization.
In most cases, neural networks with more layers perform bet-

ter, whereas fully connected deep neural networks (FCDNNs)
generally suffer from the problem of vanishing gradients. As a
result, increasing the depth of an FCDNN does not necessarily
improve the performance. Kojima et al. solved this problem by
using a residual deep neural network [ResNet, see Fig. 4(d)] to
improve the depth of training up to 8 hidden layers for both the
forward and inverse problem[16]. It takes them about two weeks
to complete collecting the 20,000-simulation data by numerical
simulations while approximately 22 min to train the neural net-
work. Once again, it reflects the high efficiency of the deep learn-
ing method.
As a typical neural network structure, the convolutional neu-

ral network (CNN) has been successfully applied in the field

Fig. 3. Neurons in each layer process and transfer data in the form of column
vectors, and the weights of neural networks are expressed as matrices. The θ
represents the element of the matrixΘ: It is worth noting that we did not list
all the weights of layer I − 1, but only the information processing of the first
neuron in the I th layer is shown here.
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of image recognition and is now also used in the design of nano-
photonic devices. The two main advantages of CNNs over
FCDNNs are parameter sharing and sparsity of connections
(i.e., in each layer, each output value depends only on a small
number of inputs, which somewhat avoids the problem of over-
fitting and is more suitable to deal with the design problems with

more parameters). Ma et al. reported a CNN model comprising
of two bidirectional neural networks assembled by a partial
stacking strategy [see Fig. 4(c)], to automatically design and
optimize 3D chiral metamaterials with strong chiral-optical
responses at predesignated wavelengths[17]. Wu et al. used
CNN to predict the topological invariant of a 1D photonic

Fig. 4. (a) Bidirectional network used for inverse design[13]. (b) The TN consists of an inverse design network and a forward modeling network[14]. (c) A CNN consists
of two bidirectional neural networks, and it is capable of automatically designing and optimizing three-dimensional (3D) chiral metamaterials with strong chiral-
optical responses at specified wavelengths[17]. (d) A DNN for forward and inverse design of a power splitter[16].
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crystal (PC) for geometric configurations that lie outside the
parameter space of the training dataset[18], as shown in Fig. 5(a).
Zhao et al. designed an optical fiber imaging system based on a
deep CNN that can transmit real-time non-artificial cell images
through a one-meter-long Anderson localizing optical fiber[19].
They showed that trained neural networks could learn to retrieve
the images of cells with very different shapes and categories that
have never been “seen” during training.
Another type of neural network whose application range is

extended rapidly is the generative adversarial network
(GAN)[20]. Generating samples is a harder problem compared
to discriminative models. Given a training set, the GAN learns
to generate new data with the same statistics as the training set.
This feature enables the GAN to be applied to inverse design.
Fan et al. showed that the GAN can be trained from periodic
and topologically optimized metagratings images to produce
efficient and topologically complex devices that can operate over
a wide range of deflection angles and wavelengths with a one-
time computational cost[21]. However, GAN models sometimes
suffer from problems such as mode collapse, non-convergence,
and diminished gradient. Ma et al. presented a probabilistic
model of a variational auto-encoder (VAE) for the design of

devices[22]. A semi-supervised learning strategy is used in this
work, which improves the performance of the model. The
GAN can be combined with other generation model methods of
deep neural networks, such as auto-encoder (AE), to improve
the stability of the network. For example, Tang et al. utilized
a novel conditional variational auto-encoder (CAVE) [see
Fig. 5(b)] for their power splitter design application[23]. They
succeeded in using only binary-level nanophotonic datasets to
generate a power splitter with an arbitrary ratio in the band-
width between 1250 nm and 1800 nm. The FDTD simulations
confirm that the overall transmission is close to 90%.
Recently, benefiting from the development of deep learning

itself and the open source software libraries such as TensorFlow,
there are more and more reports of applying neural networks to
the design of nanophotonic devices, and the overall trend is that
the structure of neural networks is more advanced and complex.
In addition, taking advantage of the “black box” characteristics
of deep learning (i.e., people do not care about its internal struc-
ture, but only its input and output), some novel algorithms
have been invented by modifying the deep learning method.
Zhou et al. designed two programmable optical signal process-
ing chips with a learning ability based on the idea of the deep

Fig. 5. (a) CNN used to predict the invariance of 1D photonic crystal[18]. (b) A novel CAVE for the design of a power splitter[23].
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learning method[24–26]. The chip can be trained to perform the
desired function by the gradient descent method and can be
treated as a black box without having to know the internal
information.

2.3 Discussion and outlook

Deep learning methods have many advantages over traditional
algorithms. First, one advantage of deep learning is that once
trained it costs less time than traditional algorithms (i.e., less
computational cost) and is more likely to find better local opti-
mal solutions. For example, using neural networks to predict the
spectrum of a nanoscale optical device tends to be more accurate
than traditional algorithms. Hammond et al. trained ANNs to
model both strip waveguides and chirped Bragg gratings, and
they found that the trained ANNs decreased the computational
cost relative to the traditional design methodologies by more
than 4 orders of magnitude[27]. As a result of the higher
efficiency of designing well-performed devices compared to
the traditional algorithm, deep learning methods have also been
successfully employed in other areas such as high-energy phys-
ics[28], condensed matter[29], chemical physics[30], and hologra-
phy[31]. Second, compared with traditional optimization
algorithms, deep learning methods can realize inverse design
more easily and the deep learning methods for discovering opti-
cal structures based on desired functional characteristics have
made rapid progress[13,14,16,27,32–42]. Third, the deep learning
neural network has many typical structures and strong flexibil-
ity. We can choose the appropriate neural network for optimal
design according to the needs of design devices, and many prob-
lems in the training process can be solved by adjusting the
hyperparameters or structure of the neural network appropri-
ately. Last, as one of the frontiers of computer science, deep
learning is still in development with its wide-ranging applica-
tions. The one that gets the most attention is the all-optical neu-
ral network. Optical computing systems have attracted more
and more attention due to the importance of cutting down com-
puting costs. Optical computing has the advantages of low
energy consumption, scalability, no photoelectric conversion,
and broad bandwidth, and can be used as special accelerating
hardware for AI algorithms (such as DNN). Shen et al. proposed
a new architecture for an all-optical neural network that greatly
improved the computational speed of dealing with conventional
learning tasks[43]. Feldmann et al. showed the development of a
new kind of all-optical neural network[44], and Lin et al. also
realized all-optical machine learning through a diffraction deep
neural network[45]. Some other architectures have been pro-
posed as well such as Mach–Zehnder interferometers[43], sin-
gle-pixel imaging[46], nanophotonic medium[47], and Fourier
optics[48]. The development of all-optical neural networks
may revolutionize the field of computing.
However, deep learning methods also have some limitations

and drawbacks. First, since the design of nanophotonic devices is
a non-convex problem, it is impossible to guarantee that the
designed devices are optimal. Jiang et al. presented a global opti-
mizer that performs a global search for the optimal device within

the design space, but the final devices may not be the optimal[49].
Second, it takes a lot of computational cost and time cost to pre-
pare the training set and train the ANN, especially when dealing
with complex learning tasks. In order to train the CNN to pre-
dict the optical responses of arbitrary structures by 2D cross-
section images, Qu et al. spent 15 days preparing input data
and nearly a week training the network[50]. However, the intro-
duction of unsupervised learning and transfer learning algo-
rithms can help to release the burden on data[39,51]. Third, it is
sometimes difficult to exploit the trained neural network for fur-
ther analysis because the learning mechanisms of ANN (note
that these mechanisms can be useful sometimes) are operating
as black boxes, whereas, the useful information about the fea-
tures of photonic structures can be extracted with proper tech-
niques, such as introducing latent space[22]. Fourth, stronger
ability of transfer learning is needed to cope with the changeable
situations[52], although this in-development ability has shown its
power in the design of nanophotonic devices[51]. Last, when the
number of training samples is small, conventional methods may
perform better than deep learning methods. Jiao et al.
found that linear-regression-based methods may outperform
the deep learning approaches for two black-box optical imaging
problems[53].
At the end of this section, some prospects for neural networks

are given. Based on the outstanding performance of the deep
learning method in the nanophotonic field and the analysis of
a number of papers, we can confidently predict that there will
be less nanophotonic device design works in the future without
a deep learning algorithm. Its flexibility also facilitates it to be an
excellent candidate for handling other nanophotonic prob-
lems[54–56]. Additionally, as deep learning methods have a better
transfer learning capability than the traditional machine learn-
ing methods, deep transfer learning also shines in other
fields[57,58]. We believe that in the future the trained neural net-
work can be used not only for designing specific devices, but also
for designing new devices, which means less time required to
design devices with different functions and a wider parameter
space to search for the optimal solution based on a pre-trained
ANN.

3. Nanophotonic Devices Based on the Gradient-Based
Inverse Design

Between the 1870s and 1880s, the importance of inverse prob-
lems has grown considerably in many fields. The mathematical
expression of a physical law is a rule that defines a mapping T of
a set of functions ξ called the parameters into a set of functions δ
called the results. According to the above expression, to find
inverse mappings of δ into ξ, inverse problems can be defined
in a precise mathematical form that excludes the so-called “fit-
ting procedure” in whichmodels depending on a few parameters
and giving a good fit of the experimental results are obtained by
trial and error or any other techniques[2,59]. In the field of nano-
photonic devices, formulas for inverse problems have been
widely understood, and the application of computational
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methods based on inverse design for nanophotonic devices has
recently grown considerably[2,3]. There are two central thrusts of
inverse problems in nanophotonics, which are the determina-
tion of solution characteristics and the discovery of effective
algorithms for working from desired characteristics to physical
systems.

3.1 Introduction to the gradient-based inverse design

The Vuckovic group at Stanford University reported an inverse
design algorithm and there are a variety of nanophotonic devices
designed by the algorithm, such as multi-channel devices, power
splitter (router)[60–62], grating coupler[63], TE or TM mode con-
verters, mode routers such as TE/TM and wavelength router,
spatial mode[3,60,62,64,65], dielectric laser accelerators[66], and
non-reciprocal pulse router and switch[67,68]. Considering the
general formulation of the inverse design problem for optical
devices, the gradient-based inverse design algorithm specifies
device functionality by describing the mode conversion effi-
ciency between a set of input modes and output modes[60,62–65].
The input and output modes are specified by the user and
keep fixed during the optimization process. The input modes
i = 1, : : : ,M are at frequencies ωi, and can be represented by
an equivalent current density distribution Ji. The fields Ei pro-
duced by each input mode satisfy Maxwell’s equations

∇ × μ−10 ∇ × Ei − ω2
i εEi = −iωiJ i, (3)

where ε is the permittivity distribution and μ0 is the permeability
of free space. For each input mode i, a set of output modes
j = 1, : : : ,Ni are specified, whose amplitudes are bounded
between αij and βij. If the output modes are guided modes of
waveguides with modal electric fields εij and magnetic fields
Hij, this constraint can be written using a mode orthogonality
relationship

αij ≤ j
ZZ

�Ei ×Hij � εij ×Hi�ndr⊥j ≤ βij. (4)

Here, n is a unit vector pointing in the propagation direction
and r⊥ denotes the coordinates perpendicular to the propagation
direction. Faraday’s law

∇ × Ei = −iωμ0Hi (5)

can be used to rewrite Eq. (4) purely in terms of the electric field:

αij ≤ j
ZZ

�Ei ×Hij � εij ×
i

ωμ0
∇ × Ei�ndr⊥j ≤ βij: (6)

More generally, the output mode amplitude can be specified
in terms of a linear function Lij of the electric field Ei:

αij ≤ j
ZZ

Lij�Ei�j ≤ βij, (7)

where V = fE∶R3 → C3g is the space of all possible electric field
distributions and Lij∶V → Cmaps the electric field distributions

to a complex scalar. R is the set of real numbers, C is the set of
complex numbers, and V is the electric field distributions.
After the problem formulation, the gradient-based inverse

design algorithm solves Maxwell’s equations numerically and
employs numerical optimization techniques to design devices.
It uses two methods to solve this problem: the ‘objective first’
method and a ‘steepest descent’ method. In the objective first
method, the algorithm constrains the electric fields Ei to satisfy
the performance constraints in Eq. (7). Then the algorithm
minimizes the violation of physics using the alternating direc-
tions method of multipliers (ADMM) optimization
algorithm[60,62–65].

3.2 Application of the gradient-based inverse design

The gradient-based inverse design algorithm is a relatively gen-
eral computational method for nanophotonic design that is
widely used in the design of nanophotonics devices. In this sec-
tion, we present some typical nanophotonic devices designed by
the inverse design algorithm. Themulti-channel device, which is
called a hub by its designers, is shown in Fig. 6(a)[62]. The device
has two input waveguides, two output waveguides, and two
wavelengths, hence called a 2 × 2 × 2 hub. The performance
specification of the multi-channel device is that the input and
output modes all consist of the fundamental TE-polarized mode
at either the 1550 nm or 1310 nm wavelength. This hub directs
input arms 1 and 2 into output arms 1 and 2 at 1550 nm, but
swaps them at 1310 nm. The electromagnetic energy density dis-
tribution of the hub is shown in Fig. 6(b).
In addition to the multi-channel device in a single polariza-

tion mode, the algorithm is also used to design devices that
can exhibit different functionality for different input excitations,
such as the mode converters. Figure 6(c) is a schematic diagram
of the TE mode converter, which is a mode conversion device
operating in TE polarization[62]. The footprint of the TE mode
converter is only 1.6 μm × 2.4 μm, and the operating wavelength
is 1550 nm. The above examples are all designed on the plane
structure. The gradient-based algorithm is also used to design
a variety of three-dimensional waveguide-coupled devices on
a silicon photonics platform[60]. Figures 6(d) and 6(e) show
the 1 × 3 power router, whose power in the fundamental tra-
verse-electric (TE) mode of the input waveguide is equally split
into the fundamental TE mode of the three output waveguides,
with at least 95% efficiency. The structure of the power router
consists of a single fully etched 220 nm thick Si layer with SiO2

cladding. Broadband performance is achieved by simultaneous
optimization at 6 equally spaced wavelengths from 1400 nm to
1700 nm, and the total footprint is 3.8 μm × 2.5 μm[60].
The researchers then improved the algorithm further, and

they introduced the adjoint method to compute the gradient effi-
ciently by using a single time-reversed electromagnetic simulation.
Usually, when we optimize the parameters of a system, we know
the laws of physics (usually expressed as PDE) that the system fol-
lows. This type of problem, called PDE-constrained optimization,
has many application scenarios[69,70]. A class of methods to solve
this kind of problem is called the adjoint method[71].
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The adjoint method can well optimize parameters and solve
practical problems, is relatively mature, and can be widely used.
The time-dependent adjoint method can also be used to solve
optimal control problems. If the state transition of the
control problem itself is too complex to form a closed solution,
gradient descent is a good choice considering the constraints.
On the other hand, in the optimal control, we can consider
the randomness of system transfer, so the adjoint method can
obviously take the similar randomness into account. Given t
for time, we consider the optimization within the time period
0 ≤ t ≤ T .
System: g�x�0�,p� = 0, h�x,ẋ,p,t� = 0. Determine the ini-

tial state x(0), and the subsequent evolution of x follows
an ODE.
Loss function: F�x,p� =minp∫ T

0 f �x,p,t�dt. This is an integral
over time.
Similarly, we define the Lagrange function:

ℒ =
Z

T

0
�f �x,p,t� � λTh�x,ẋ,p,t��dt � μTg�x�0�,p�: (8)

After taking the derivative, we can get

dpℒ =
Z

T

0
� ∂xf dpx� ∂pf � λT� ∂xhdpx� ∂ẋhdpẋ� ∂ph��dt

� μT � ∂x�0�gdpx�0� � ∂pg�: (9)

And then we simplify dpẋ and dpℒ.

The end result is

dpℒ =
Z

T

0
� ∂xf � λT ∂xh − λ̇T ∂ẋh − λτdt� ∂ẋh��dpxdt

�
Z

T

0
� ∂pf � λT ∂ph�dt � λT ∂ẋhdpxjT

� �μT ∂x�0�g − λT ∂ẋhdpx�j0dpx�0� � μT ∂pg: (10)

We can take the multipliers x and y so that both of the terms
in the brackets are zero.
In a word, during the whole optimization process, only three

steps are needed for a single gradient descent.

1. For current p, calculate the x(0) according to the
g�x�0�,p� = 0, and solve all the x(t) through the
h�x,ẋ,p,t� = 0.

2. Write out the ODE that the multiplier satisfies, and solve
for λ�t� and μ�t� based on the condition that the terms in
the two brackets are zero. (Note here that solving the ODE
is in reverse time.)

3. Calculate the gradient dpF=∫ T
0 � ∂pf �λT ∂ph�dt�μT ∂pg ,

where the multiplier has been calculated, and then the gra-
dient goes down.

Thus, for each step of gradient descent, we only need to do a
few simulations and then solve a few ODEs. The computation is
greatly reduced.
The application of the adjoint method in the optimization

problem with constraints has two main aspects[71]. First, a sys-
tem with unknown parameters can output data by collecting
input, and then estimate the parameters of the system. Loss

Fig. 6. Nanophotonic devices designed by the gradient-based inverse design. (a) The structure diagram of 2 × 2 × 2 hub[62]. (b) The electromagnetic energy
density of the hub about the fundamental TE-polarized mode at either 1550 nm or 1310 nm. (c) Performance specification of the TE mode converter[62]. (d) and
(e) 1 × 3 power router with 500 nm wide input and output waveguides[60]: (d) SEM image of the fabricated router; (e) the electromagnetic energy density of the
power router at 1550 nm.
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reflects the difference between the system output and the actual
output measured. Second, in order to design a system with a cer-
tain function, loss reflects whether the system and the target
function fit, and then we optimize the parameters of the system
to complete the inverse design.
In the improved gradient-based inverse design algorithm, the

adjoint algorithm is used to calculate the gradient and optimize
the parameters and the structure. With boundary parameteriza-
tion and structure optimization, a broadband optimization to
produce a robust device can be performed[63–65]. Other types
of routers like the TE/TM mode and wavelength routers are
designed by the improved gradient-based inverse design algo-
rithm, which shows that different photonic signals can be
split[60,65]. The final result of the TE/TM router is shown in
Figs. 7(a) and 7(b)[62]. The footprint of the device is 2.8 μm ×
2.8 μm, and the conversion efficiencies into the upper and lower
output arms are 87.6% and 88.8%, respectively. Figure 7(c) is a
measured transmission of the three-channel wavelength router
designed by the algorithm[65]. Applying gradient descent
directly can lead to structures with weak dielectric constant
modulation between the two, which will lead to poor perfor-
mance in the discrete phase. In the process of designing the
wavelength router, Su et al. mitigated this issue through a spe-
cific variant of penalty functions, which they called biasing. The
peak average measured transmission of the three-channel wave-
length router is −2.82 dB at 1471 nm, −2.55 dB at 1512 nm, and
−2.29 dB at 1551 nm, and the peak insertion loss is −2.29 dB

with −10.7 dB crosstalk. The simulated electromagnetic density
at the operating wavelengths is shown in Fig. 7(d). As can be
seen from the figure, a continuous topography is generated in
the design process of the algorithm. In addition, the device
was designed in approximately 60 h on a single computer with
an Intel Core i7 −5820K processor, 64 GB of RAM, and three
Nvidia Titan Z graphics cards. The design process needs to be
further improved in order to increase efficiency and adapt to
the development of high density and high-speed integration.
With the development of artificial intelligence and informa-

tion technology, more and more types of nanophotonic devices
have been recently designed by the inverse design algorithm. It
tends to be used in the design ofmultifunctional devices and cas-
caded devices, such as laser-driven particle accelerators, resona-
tors, interfacing grating couplers of conceptual photonic
circuits, and switches[61,66–68]. A scanning electron microscope
(SEM) image of cascaded nonlinear resonances is shown in
Fig. 8(a), which is implemented on a silicon-on-insulator plat-
form[67]. The enlarged images show reflectors designed by the
inverse design algorithm on the silicon waveguide in the resona-
tor–waveguide coupling region. The R = 94% reflector used to
implement a Lorentzian resonator is shown in Fig. 8(b). The
top is the optimization trajectory to obtain the desired non-
resonant high reflection, the bottom is the low-power transmis-
sion of a single device with non-resonant reflection R = 94%, and
the red line is a fit with a Lorentzian line shape. A conceptual
circuit comprised of three components with completely different

Fig. 7. Nanophotonic devices designed by the gradient-based inverse design. (a) The structure diagram of TE/TM router[62]. (b) The Electromagnetic energy
density of the TE/TM router at 1550 nm. (c) Measured transmission of the three-channel router[65]. (d) Simulated electromagnetic energy density of the
three-channel router at the three operating wavelengths.
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geometries – vertical couplers, waveguide-splitters, and nano-
beam PhC cavities – is also designed by the gradient-based
inverse design algorithm, which is shown in Fig. 8(c)[61]. The
device is designed to interfere with the transmission of two
nano-beam PhC cavities at an inverse-designed waveguide split-
ter with a 50:50 splitting ratio and simulated efficiencies of 95%.
The cavities are addressed separately or simultaneously by top-
down excitation with a supercontinuum source focused on the

cavities directly, as presented in Fig. 8(d). The two cavities are
tuned into and out of resonance via gas condensation, as shown
in Fig. 8(e). Comparing the amplitudes of the cavity on and off
resonance, which draws the conclusion of constructive interfer-
ence, indicates that the cavities are approximately in phase and
have the same polarization. The multifunctional cascaded devi-
ces designed based on the gradient-based inverse design algo-
rithm presented above have achieved good performance, but

Fig. 8. Nanophotonic devices designed by the gradient-based inverse design. (a) SEM image of cascaded Fano–Lorentzian resonators implemented on a silicon-
on-insulator platform[67]. (b) The R = 94% reflector used to implement a Lorentzian resonator. Top: optimization trajectory to obtain the desired non-resonant high
reflection; bottom: low-power transmission of a single device with non-resonant reflection R = 94% and red line is a fit with a Lorentzian line shape. (c) A con-
ceptual photonic circuit that consists of a grating coupler followed by a waveguide-splitter and two resonators, and the outputs of them are then recombined in a
waveguide-splitter and coupled off-chip through a grating coupler[61]. (d) Spectra of the nano-beams from the device shown in (a). The green, black, and red data
correspond to the upper, both, and the lower nano-beam, respectively. (e) Demonstration that cavities with a fabrication-induced frequency offset can be tuned in
resonance via gas tuning; the color bar corresponds to normalized counts.
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the size of the devices is large, and the method may still be fur-
ther improved to meet the requirements of high density
integration.

3.3 Discussions

The gradient-based inverse design can automatically design
photonic devices, which is an automated photonics design,
and only requires the user to input high-level parameters. The
algorithm can afford large parameter space, and design devices
that exploit the full space parameters of fabricable devices. It
tends to require fewer simulations than genetic or particle
swarm optimization as they do not rely on parameter sweeps
or random perturbations to find their minima. The gradient-
based inverse design algorithm can be used to design photonic
devices with any passive and linear photonic element. However,
the design achieved by the inverse design algorithm typically
exhibits a continuous topography, and some very small compo-
nents in structures may be formed during the inverse designing
process, which brings challenges for sample fabrication.
Moreover, the gradient-based inverse design method usually
produces a local optimal solution, and it cannot realize the true
global optimization.

4. Nanophotonic Devices Based on Swarm Intelligence
Algorithms

Swarm intelligence refers to ‘the non-intelligent subject shows
the characteristics of intelligent behavior through cooperation’,
which is a kind of computing technology based on the laws of
biological group behavior. In recent years, there have been vari-
ous algorithms in the research field of swarm intelligence theory,
such as the genetic algorithm (GA), particle swarm optimization
(PSO), and the ant colony algorithm (ACA). It is proved that
swarm intelligence algorithms are effective methods through
the research of the theory and application method. It can effec-
tively solve most optimization problems.

4.1 Genetic algorithm

GA is an adaptive optimization global search algorithm that
simulates the genetic and evolutionary process of organisms
in natural environments[72]. In essence, it is a parallel, efficient,

and global search method that can automatically acquire and
accumulate knowledge when searching space automatically
and controlling the search process adaptively to obtain the opti-
mal solution. GA has been successfully applied to various aca-
demic and industrial applications, such as communication
and photonics[73–75]. GA is a stochastic optimization technique
based on natural selection and evolutionary biology. It is well
suited for complex problems where many of the system param-
eters must be optimized simultaneously and for other practical
problems where there may not be a unique and well-defined
optimal value.
According to individual fitness and certain rules, some indi-

viduals with excellent traits are selected from the nth generation
group and passed on to the next generation (n� 1) population.
In this selection process, the greater the fitness of an individual,
the greater the chance of being selected to the next generation.
For the fitness of individual i of f i and the population size of N ,
the probability formula of i being selected is

Pi =
f iP
N
i=1 f i

: (11)

Individuals selected from population are randomly matched
and, for each individual, a certain probability (crossover prob-
ability 0.25–1.0) is used to swap parts of their chromosomes
(partial position of the encoding bit string). The search ability
of GA is extended better. Figure 9 is the flow chart of the GA.
To obtain the desired optical properties, Huntington et al.

designed a lattice evolution algorithm that allows lattice optical
materials to exhibit simple properties or focus light on discrete
points[6]. It is shown in Fig. 10(a). Using multiple scattering and
GA to determine the photonic crystal structure to be optimized
is reliable and can complete specified optical tasks. GA is used to
operate on a set of candidate structures to find new candidate
structures with stronger performance during the whole iteration.
David et al. used GA to design an optimized antireflection coat-
ing with broadband and omnidirectional characteristics[76]. The
simulated reflection characteristics of the antireflection coating
are shown in Fig. 10(b). The simulation results of the optimized
three-layer coating show that the performance of the coating is
significantly improved compared with that of the traditional
coating.
Yu et al. used GA to optimize the design of the prevalent thin-

film-on-insulator platform for reflectors[77]. The structure is

Fig. 9. The flow chart of GA[77].
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composed of randomly distributed pixels, and the manufactur-
ing process is compatible with CMOS, requiring only one-step
lithography and etching. The structure and electric field dis-
tribution before and after the optimized design are shown in
Fig. 10(c). Sanchis et al. designed a coupler device capable of
introducing light generation from optical fibers into a photonic
crystal-based waveguide[78]. As is shown in Fig. 10(d), the opti-
mized integrated device (waveguide coupler) and its electric field
modulus diagram are illustrated.
Our group has constructed an intelligent algorithm by com-

bining GA and FEM to design a wavelength[7] and polarization
router[8] that can realize the beam splitting of wavelength and
the recognition of TE and TM polarization states. The footprint
is only 1.4 μm × 1.8 μm for the wavelength router and 0.97 μm ×
1.24 μm for the polarization router in the experiment around the
optical communication range. These are the smallest ever
demonstrated experimentally. A broad operation band, trans-
mission up to 98%, and various output ports can be simultane-
ously achieved, and it is convenient to realize various routers
with different materials (both dielectric and metal), different

configurations, different channels, and different structure cell
quantities or sizes. In addition, the average position error toler-
ance for each cell structure is about ±20 nm for all the wave-
length or polarization routers designed by the intelligent
algorithm, which satisfies the current nanofabrication technol-
ogy. Figures 11(a) and 11(b) are the structures of the wavelength
router and the transmission spectrum of its upper, right, and
lower ports, respectively; the structure of the polarization router
is shown in Fig. 11(c) and the transmission spectra of its right
and lower ports are shown in Figs. 11(d) and 11(e), respectively.
Chen et al. proposed a method[79] combining field emission

(FE) modeling and GA to optimize the focused quality of inte-
grated gated carbon nanotubes. The design effect is shown in
Figs. 12(a) and 12(b). It is challenging to overlap the radiation
power spectrum between the magnetic dipole moment and the
electric dipole moment of nanoparticles in a wideband way.
Liu et al. combined GA, Maxwell’s equation, and electromagnetic
multipole expansion[80] to design a nanoparticle that supported
resonant broadband forward light scattering. The result is shown
in Fig. 12(c).

Fig. 10. Nanophotonic devices designed by GA. (a) Lattice optical materials capable of focusing light into several different focal points in the far field. The left is a
schematic diagram of the experimental device. The right shows light focused on several different points through a lattice of lattice optical materials[6].
(b) Simulated reflection characteristics of antireflection coatings[76]. (c) The left is the initial silicon plate and the corresponding electric field distribution before
optimization, and the right is the structure and electric field distribution of the reflector after optimization[77]. (d) The structure obtained after GA and simulated
transmittance spectrum[78].
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GA is well suited for complex problems, such as having to
optimize many system parameters at the same time, and some
other application problems may not have well-defined and
unique optimal values. GA can not only solve the single objective
optimization problem, but can also play a more important role
in the multi-objective optimization problem. The common
selection method of multi-objective GA is to define individual
fitness through different methods. Although the local search

ability of GA is poor, it is often used in combination with other
algorithms to improve the performance of the algorithm by tak-
ing advantage of its easy parallel implementation. In many
works[6–8,76–82], researchers apply GA to the field of photonics
in order to achieve the optimal design of devices.
Just like GA, based on biological evolution, the cultural algo-

rithm (CA) uses cultural or social evolution to simulate human
society and solve optimization problems by using domain

Fig. 11. Nanophotonic devices designed by GA. (a) The structure diagram of wavelength router and (b) the simulated transmittance[7]. (c) The optimized structure
of the polarization router. (d) and (e) are the simulated transmission spectra of the polarization router’s O1 and O2 ports[8].

Fig. 12. Nanophotonic devices designed by GA. (a) Measured data and calculated results (red solid line), the illustration is a schematic of carbon nanotube films
and diode FE measurements. (b) Optimized electron beam trajectories for type of FE device[79]. (c) The total scattering efficiency of normalization (black line), and
the contribution of induced electric dipole (ED) and magnetic dipole (MD) moments of core-shell nanoparticles[80].
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knowledge to reduce the search space[83]. CA is an evolutionary
algorithm of social or cultural evolution proposed by Reynolds
in 1994. It is a flexible technology that is easy to implement.
Khorrami et al. first introduced a guided mode resonance
(GMR) grating filter designed using CA and explained that
CA can be used to design electromagnetic time problems, such
as devices with more than three target parameters.

4.2 Particle swarm optimization

The PSO algorithm is derived from the simulation study of
migration and aggregation behavior in the foraging process of
birds. The basic idea is to find the optimal solution through
the cooperation and information sharing among individuals
in the group. It contains the characteristics of evolutionary cal-
culation and swarm intelligence. It is essentially a kind of ran-
dom search algorithm[84] that can converge to an optimal
solution with a large probability.
In PSO, the velocity and position of each particle in the sol-

ution space are initialized, including the entire possible solution
set[85]. The fitness function acts as a guide to get these particles to
the target value of the fitness function.
The whole process can be represented by the equations

Vid = ωVid � C1random�0,1��Pid − Xid�
� C2random�0,1��Pgd − Xid�, (12)

Xid = Xid � Vid , (13)

where ω is the nonnegative inertia weight factor. When it is
larger, the global optimization ability is stronger, while the local
optimization ability is weak; when it is smaller, the global opti-
mization ability is weak and the local optimization ability is
strong. C1 and C2 are acceleration constants. C1 is the individual
learning factor of each particle, and C2 is the social learning
factor of each particle. Usually, C1 = C2 = 2, but it does not
have to be 2. In general, C1 = C2 ∈ �0, 4�. Random (0, 1) repre-
sents the randomnumber in the interval [0, 1], Pid represents the
dth dimension of the individual extremum of the ith variable,
and Pgd represents the dth dimension of the global optimal
solution.
Using the PSO algorithm to optimize the parameters, Djavid

et al. proposed an evolutionary design approach of the photonic
crystal notch filter[86]. The designed filter and the recording of
the electric field intensity are shown in Figs. 13(a) and 13(b),
respectively. Kumar et al. used the simulated PSO algorithm
to optimize the structure of photonic crystals and studied a
waveguide terminal realizing directional emission of photonic
crystals[5]. Figure 13(c) shows the optimized PSO structure
and their electric field distributions. Forestiere et al. used the
PSO algorithm to optimize the array of plasma nanoparticles[87],
resulting in a non-periodic structure and an enhanced broad-
band field across the entire visible spectrum. They also found
that the broadband field enhancement in nanoplasmas can be
achieved by designing aperiodic arrays, and aperiodic arrays
provide the necessary interactions between distant diffraction
interactions at multiple scales and near-field quasi-static cou-
plers within small nanoparticle clusters. The optimized array

Fig. 13. Nanophotonic devices designed by PSO. (a) A notch filter based on microcavity and (b) single frame extract video recording of the electric field intensity
of the notch filter at the wavelength of 1500 nm[86]. (c) The structure of the tapered PSO and the distribution inside the electric field[5].
(d) The optimized geometry of the silver nanoparticles array and (e) the magnitude of its Fourier transform[87].
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of silver nanoparticles and its Fourier transform magnitude are
shown in Figs. 13(d) and 13(e), respectively.
In order to design a binary mask, Rogers et al. used a binary

PSO algorithm to optimize the mask[88]. The whole swarm con-
sists of a specified number of particles that move continuously in
the N-dimensional search space to find the optimal solution.
Compared with the number of fixed annuli, the number here
will be different during optimization. They defined the opti-
mized merit function as the size of the center point. In the appli-
cation of this algorithm, they used a group of 60 particles and
performed 10,000 iterations with N = 100, resulting in a
super-oscillatory lens (SOL) design [Fig. 14(a)]. The clustering
feature is displayed in the Fig. 14(b). It is well known that multi-
objective optimization strategies have great advantages over sin-
gle-objective optimization methods in finding a well-distributed
set of solutions, which ensures post-processing and decision-
making extremely convenient. Most of the designed grating cou-
plers used in silicon photonics match a nearly 10 μmmode-field
diameter (MFD) of single-mode telecommunications fibers[89].
Passoni et al. analyzed grating couplers on silicon on insulator
(SOI) platforms applied toMFD (4–100 μm) and gained a physi-
cal understanding of the efficiency of the corresponding coupled
spectra and the spectral trend. Mak et al. used a binary particle
swarm optimization algorithm to optimize the binary configu-
ration of cells, and the region with a size of 4.8 μm × 4.8 μmwas
optimized[90]. By processing binary variables and thresholding,
the continuous configuration space is transformed into a

discrete configuration space. They studied the application of a
small power divider based on two-dimensional (2D) grid binary
particle swarm optimization in casting a standard silicon photon
platform. The design results are shown in Figs. 14(c) and 14(d).
Ha et al. proposed a design method for the ultra-compact

small footprint lens. Combining the PSO algorithm with spatial
technology[91], the two-step and four-step zoom lenses are inte-
grated into the SOI chip with the footprint of 35 μm × 35 μm to
achieve the zoom of 2.5 × and 3.4 × , which provides a new idea
for the designing of small on-chip display devices. The design
results are shown in Figs. 14(e) and 14(f). With the use of
PSO and GA, Wohlfeil et al. proposed a fast and flexible opti-
mization method for fiber grating couplers[92]. A kind of one-
dimensional fiber grating coupler is derived from a waveguide
with random etching. The resulting theoretical coupling effi-
ciency of the grating is up to 1.1 dB and provides clear design
rules for the layout of the efficient fiber grating couplers.
PSO has a fairly fast speed of approaching the optimal solu-

tion, which can effectively optimize the parameters of the sys-
tem. The advantage of PSO is that it can be applied to
continuous function optimization problems. The main draw-
back of this method is that it is easy to produce premature con-
vergence, especially in dealing with complex multiple optimal
value search problems, and its local optimization ability is poor.
PSO falls into local minimum, which is mainly attributed to the
loss of diversity of population in search space. To further
improve it, we can either combine it with other algorithms or

Fig. 14. Nanophotonic devices designed by PSO. (a) The SEM image of SOL and (b) the SEM image of the cluster of nanoholes on the metal membrane. The SOL
image shows all the main features of the cluster[88]. (c) Optimized power splitter device and (d) normalized strength[90]. (e) The white rectangle represents the
spatial distribution of the nanometer aperture of the two-channel multiplexing lens. (f) The simulated intensity profiles of the radiated beam of the two-channel
multiplexing metalens in the xz plane[91].
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add mutation operation. PSO has been used to optimize nano-
structures and design nanophotonic devices. It can be used to
optimize multidimensional problems. Although PSO has a high
requirement for parameter setting, its process is easy to under-
stand and its convergence speed is fast.

4.3 Ant colony algorithm

ACA is derived by simulating the process of ants finding their
way in nature, and it is an intelligent algorithm to search the
shortest path. ACA has the advantages of strong robustness[93]

and easy integration with other algorithms.
The basic ACA is expressed as follows: at the initial moment,

m ants are randomly placed, and the initial amount of phero-
mone on each path is equal. At the moment t, the probability
of the kth ant moving from node i to node j is

pij =
τijηijP
ταijη

β
ij

, (14)

where τij is the intensity of biopheromone on the line of ij at time
t; ηij is the heuristic factor indicating the expected degree of ant
moving from node i to node j, usually taking the reciprocal of the
distance between i and j. α and β represent the degree of relative
importance of the pheromone and expectancy heuristic factors,
respectively. After each ant traverses once, the pheromone
update on each path is

τij = �1 − ρ�τij � Δτij, (15)

where ρ represents the loss level of the total amount of phero-
mone on the path, and 1 − ρ represents the residual factor of
the pheromone.Δτij represents the increment of the pheromone
on path ij after the completion of this iteration, which can be
represented as

Δτij =
� 1

Lk
, the kth ant goes by ij,

0, others,
(16)

where Lk represents the length of the path traveled by the kth ant
in this traversal. Figure 15 is the flow chart of the optimization
process of ACA.
Using ACA, Saouane et al. obtained the setting of the optimal

inclination angle for the photovoltaic collector through simula-
tion and improved the efficiency of the collector[94]. Guo et al.
proposed a method to optimize the anti-reflective coating of sil-
icon solar cells with ACA in the range of 400 nm to 1000 nm
wavelength[95]. Figures 16(a) and 16(b) show the schematic dia-
gram of the antireflection coating system designed on the silicon
substrate by the ACA-based calculation method and the simu-
lation results of the reflectance performance of the optimized
antireflection coating with a wavelength ranging from 400 nm
to 1100 nm and an angle from 0° to 90°.
However, if the parameters are not set properly, the solution

speed will be very slow and the quality of the solution will be
particularly poor. In the early stage, it takes a long search time
and a large amount of calculation, which leads to a long time for

the overall solution. In the design of nanophotonic devices, ACA
is suitable for combinatorial optimization and continuous func-
tion optimization. The whole process of the algorithm is intui-
tive, but it takes a long time to solve.
For swarm intelligence algorithms, the overhead of each indi-

vidual in the system is very small, and the functions that each
individual can achieve are very simple, which leads to the short
execution time of each individual. Therefore, the implementa-
tion is relatively simple and convenient for researchers to imple-
ment programming and parallel processing on the computer.
However, parameter sensitivity is a problem that needs to be
paid attention to, because improper selection will increase the
time cost and complexity of subsequent calculations.

5. Nanophotonic Devices Based on Individual Inspired
Algorithms

5.1 Simulated annealing algorithm

The SAA was first introduced by Kirkpatrick et al. in 1983 to
mainly apply to discrete optimization problems. Originating
from the physical process in which a crystalline solid slowly
cools down from a relatively high temperature and gradually
forms a regular crystal configuration during the annealing

Fig. 15. The flow chart of ACA optimization process[94].
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process, the algorithm provides a strategy to escape local optima,
hoping to achieve the global optimum[96].
Figure 17 illustrates the flow chart of simulated annealing.

The algorithm begins with a customized initial temperature,
which lowers at a given speed at the end of each iteration. At
each temperature, a new-found solution is compared with the
current one based on a given objective function. A better solu-
tion will be accepted consistently, while a worse solution with a
higher objective function value can also be employed according
to the Metropolis criteria, that is, the algorithm accepts a worse
solution with the probability

P�Si,Sj� =
�
1, f �Sj� < f �Si�,
expf�f �Si� − f �Sj��=Tg, f �Sj� ≥ f �Si�,

(17)

where f �Si� and f �Sj� stand for values of the current solution and
new-found solution from the objective function. T , represents
the parameter temperature. With the descendance of tem-
perature, the algorithm lowers the tolerance of the distance
between two solutions and the frequency of accepting a worse
solution, simultaneously. The expression of the objective func-
tion deserves thinking twice before application as it determines
whether the final result fits the goal. Owing to the simple struc-
ture, SAA gets weak when facing a large number of parameters
to be optimized, as it randomly selects a new solution from the
solution space. The searching efficiency and possibility of find-
ing an optimum decrease simultaneously with more unknown
parameters.
Different from swarm intelligence algorithms, SAA has a sim-

ple structure that allows application of SAA under various cir-
cumstances. As another advantage, SAA requires no knowledge

of the specific problem and thus guarantees the robustness of a
random initial guess. The convergence of SAA was promised
with strict mathematical demonstration[97], while it does not
promise a global optimum, like other heuristic algorithms. As
a defect, the performance of SAA is sensitive to the customized
parameters, especially the initial temperature.
The analogous physical annealing process inspires us to set a

high initial temperature in avoidance of an insufficient cooling
process, that is, loss of ability to escape local minima. But it
introduces a waste of computing budget as the algorithm loses
the ability to judge the quality of the new-found solution and
accepts all of them until the excessively high initial temperature
cools to a critical temperature. A critical temperature represents
a balance point at which objective function values are preferred,
but the temperature is warm enough to tunnel through such sol-
utions. We have no idea about the appropriate value for the ini-
tial temperature when the algorithm needs no knowledge of the
problem. In that case, experiments are expected to identify
the initial temperature and such a method was proposed by
Basu et al.[98].
Due to the mechanism of SAA, a large computing budget

is always expected to search for the optimum. The situation
deteriorates even more with an excessive initial temperature.
Considering the efficiency and computing time required in
the field of nanophotonic devices, it is not appropriate to
employ such a time-consuming algorithm alone, which might
be the reason for SAA’s not being widely used to design nano-
photonic devices. But strategies like combining SAA with other
algorithms to develop its efficiency could still be a good option
when it comes to devices with discrete parameters to be
optimized.

Fig. 16. Nanophotonic devices designed by ACA. (a) The ACA-based method was used to calculate the reflection coefficient of the antireflection coating system on
silicon substrate and (b) the simulation results show that the reflectivity of the antireflection coating system is changed with wavelength and incident angle by
ACA[95].
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SAA was proposed in the field of optical inverse design by
Hara[99] as early as 1996. It was used in the design of a pnpn
differential optical switch and generated a good result taking
fabrication errors of structural parameters into account. For
other devices like a wedge filter, binary diffractive element, pla-
nar attenuator[100], and multilayer microwave absorber[101],
SAA was also once employed as the optimization tool. The pos-
sibility of the application of SAA to any arbitrary optoelectronic
devise was thus assured. In more recent times, Xie et al. designed
a broadband twisted light emitter based on a combination of
SAA and GA[102]. As shown in Fig. 18(b), the core component
of the device is a circular area divided into 288 pixels, which are
filled with either air or silicon block. The element design was
thus transformed to a discrete optimization. Distribution of

these blocks helps control the phase modulations aroused by
propagation and resonances, which realizes the functionality of
the orbital angular momentum (OAM) emitter. Figure 18(a)
gives a schematic of the device. It receives optical frequency
combs as input from the left (right) waveguide and generates
output in the form of an OAM with a state number −1 ��1�.
Compared to the inherent narrow bandwidth of whispering-
gallery-mode-enabled OAM emitters, the bandwidth of this
device is expanded to 200 nm between 1450 and 1650 nm, for
the use of developed SAA. Emission efficiency and mode purity
are also promised by the algorithm and reach the values of 35%
and 97%, respectively. Simulation results and experiment data
of emission efficiency for the OAM emitter are depicted in
Fig. 18(c). Through a similar method, a broadband on-chip
photonic spin Hall element was designed by Xie et al.[103].
Figure 19(a) gives a schematic of the element working as a
photonic spin detector when it couples light into different wave-
guides according to the polarization states. In Fig. 19(b), the out-
put power measured at the left/right port (port 1/port 2) varies
with the polarization of incident light. The output power of dif-
ferent ports under different polarization degrees of incident light
measured is shown in Fig. 19(c). As an emitter, the element gen-
erates circularly polarized light when light is coupled into two
waveguides. SAA improves the efficiency of the device as a
detector or emitter of spin light to 22% and 35%, and expands
the bandwidth to 200 nm for the detector.

5.2 Hill-climbing algorithm

The hill-climbing algorithm is a local search algorithm. Its
advantage is that it does not need a traversal process to
reach the highest point of the solution space; instead, it selects
nodes with a higher value through heuristics where the efficiency
is highly improved[104]. The process does not require memories
of the previous steps, which makes it save storage space
when searching for the optimal solution in a large param-
eter space.
The optimization of nanophotonic devices is often a complex

problem. It is necessary to find the optimal solution in the full
parameter space, and the form of the objective function is often
complicated. Therefore, hill climbing is not an excellent method
for designing nanophotonic devices. However, when the initial
structure has been proved to possess an effective function, using
hill climbing can further improve the performance of the device.
In the design of a photonic crystal-based nanocavity[105], the
optimization is based on an initial structure designed using
the deterministic method. As is shown in Fig. 20(a), the initial
structure is a one-dimensional photonic crystal, and the filling
fractions are quadratically tapered. This structure has been
proved to be effective in their previous work[106]. However,
the hill-climbing algorithm has several unavoidable disadvan-
tages. As is shown in Fig. 21(b), when a node is higher than
any of its neighbors, but it is not the highest point of the whole
function, this node will be regarded as the optimal result, which
makes us unable to get satisfactory results in the calculation. In
addition, this algorithm is easily limited by certain functional

Fig. 17. The flow chart of SAA[98].
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Fig. 18. Nanophotonic devices designed by SAA. (a) A schematic of the twisted light emitter. (b) Details of structure parameters. R (R = 1200 nm) stands for the
radius of the device, H (H = 220 nm) the height and W (W = 440 nm) the width of the waveguide. The red arrow represents light from the left waveguide.Φ1 and
Φ2 represents the propagating phase modulation and resonance modulation, respectively. Here, a scanning electron microscope image of the fabricated OAM is
presented[102]. (c) FDTD simulation result and experiment data of the OAM emitter.

Fig. 19. Nanophotonic devices designed by SAA. (a) Schematic of the photonic spin element. Incident light is coupled into different waveguides according to the
spin states. (b) The core component of an optical element. The design area is divided into 288 pixels. The green blocks stand for optimized structures filled with
silicon and the white blocks stand for air. (c) The measured output power at different ports when the polarization of incident light varies[103].

Vol. 19, No. 1 | January 2021 Chinese Optics Letters

011301-20



shapes. When encountering a “plateau” (the function value
remains unchanged in a certain range) during the searching
process, the search direction cannot be determined, and
will move randomly, which greatly reduces the efficiency;
when encountering a “ridge” (the function is steep near the
maximum), it may oscillate repeatedly around the optimal sol-
ution, and the forward speed will slow down. The hill-climbing
algorithm is used to adjust the radius of the three lattices near the
nanocavity [Fig. 20(a)]. Starting with random values of R1, R2,

and R3, structures with different parameters are evaluated by
FDTD, and selected by the method of hill climbing. As a result,
the quality factor of the second-order TE mode is improved to
1.99 × 104 [Fig. 20(b), 20(c), and 20(d)].
The hill-climbing algorithm is a relatively basic algorithm that

is easy to start with. However, with the development of intelli-
gent algorithms, more complex algorithms have obvious advan-
tages in the design of nanophotonic devices and are more widely
adopted.

Fig. 20. Nanophotonic devices designed by the hill-climbing algorithm. (a) An example of the target function in which the difficulties of hill climbing are shown.
(b) The schematic of the photonic crystal split-beam nanocavity. R1, R2, and R3 are optimized by the algorithm. Experimental transmission spectrum of the split-
beam cavity under 0.6 mW input power respectively in the whole measurement range, (c) the 2nd TE mode individually and (d) the 4th TE mode individually[105].
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5.3 Tabu search

The TS algorithm[107] is a meta-heuristic random search algo-
rithm first proposed by Glover, which is based on the improve-
ment of the hill-climbing algorithm, and usually used to solve
combinatorial optimization problems. It starts from an initial
feasible solution, and then identifies the one from a series of spe-
cific search directions where the value of the objective function
has the greatest improvement.
In order to avoid repeated searching, a flexible “memory”

technique, the establishment of the tabu list, is used in the TS
search to record and select the optimization process that has
been performed to guide the next search direction. The tabu list
has an associated size, which can be a fixed size or change during
the iterative process and can be visualized as a window on
accepted moves. The moves that tend to undo moves within this
window are forbidden[108]. During the iterative process of the TS
algorithm, it is possible that all moves in the candidate set are in
the tabu list, or the current move is in the tabu list, but the target
value will improve significantly if the tabu is lifted. In this case, in
order to break through the limitation, some tabu objects will be
made reselectable. This method is called aspiration, and the cor-
responding rule is called aspiration criterion. In the end, the TS
still will probably fall into a loop; in that case, a stopping cri-
terion is needed. Normally, the program is assigned to stop when
a fixed number of iterations are reached. The flowchart of the
process of TS is presented in Fig. 22.
The advantage of TS is that it provides a very effective solution

to jump out of the local optimal solution, and it has fast conver-
gence speed, finding the optimal solution with less iterations.
Since TS is not guaranteed to traverse the full parameter space,
it is still possible to find a local optimal solution. The search path
is determined by the direction of the current solution to the
neighborhood, so the structure of the neighbors, that is, the
mapping relationship between the initial solution and its neigh-
bors, is particularly important.
Gagnon et al. used the TS algorithm to solve inverse design

problems in integrated photonics[109]. The proposed method
is called parallel tabu search (PTS), which starts with a diverse
population of solution individuals, and each individual goes
through a TS process. This work provides a solution to the

coherent beam shaping problem, which is amulti-objective opti-
mization problem, considering both the amplitude and the
phase profile of the beam. The device is based on a 2D photonic
crystal [Fig. 23(a)], and intelligent algorithms are implemented
to determine the location of lattice defects. In order to compare
GA and PTS, they use both methods for optimization. The best
possible tradeoff between the amplitude and phase of the beam is
shown in Fig. 23(b). In comparison with GA, the PTS can pro-
duce comparable or better solutions while requiring less compu-
tation time and fewer adjustable parameters. This approach
is also applied to the design of integrated polarization
filters[110], which is shown in Figs. 23(c) and 23(d). After the

Fig. 21. (a) Flowchart of the hill climbing algorithm. (b) An example of the target function in which the difficulties of hill climbing are shown.

Fig. 22. The flowchart of TS.
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multi-objective optimization process, the devices allow for
simultaneous polarization filtering and amplitude beam shap-
ing. The average degree of polarization of the output beam is
improved to 98% with a transmission efficiency over 75% for
the TM polarizer and 80% for the TE polarizer.
TS has its opportunities in optimizing nanophotonic devices,

especially when the parameter space is finite with discrete
numeric values. However, due to relatively few reports, the pros-
pects of this field need to be further explored.

6. Nanophotonic Devices Based on Other Algorithms

6.1 Direct binary search

As mentioned above, intelligent algorithms are beneficial to the
design of compact devices and calculate the full parameter space,
compared with conventional approaches. As one of the crucial
algorithms, the DBS algorithm has drawn more and more atten-
tion recently. DBS is an iterative search algorithm that was first
used for the synthesis of digital holograms[111]. The basic

problem in the synthesis of binary digital holograms is to find
a binary-valued transmittance function for the hologram. The
DBS algorithm is used to manipulate the hologram transmit-
tance directly to produce the best reconstruction and find a
binary transmittance function that minimizes the mean squared
error between the reconstructed image and original object,
which is illustrated in the flow chart of Fig. 24[112].
With the development of intelligent optimization algorithms,

the DBS algorithm has found more application domains, and
there are some improved versions of the DBS algorithm. The
modified version of the DBS algorithm operates in an iterative
fashion. In the application of this method, the device should be
discretized into “pixels” first. The possible pixel states are two
different materials, and the two states are denoted by 1 and 0.
During each iteration of the DBS algorithm, the pixel is toggled
between these two states and the pixel to be perturbed is chosen
at random. Then, a figure-of-merit (FOM) or objective function
is calculated for the resulting device. If the FOM is improved, the
perturbation is kept and the next parameter is perturbed, and the
FOM is evaluated. If the FOM is not improved, the perturbation

Fig. 23. Nanophotonic devices designed by TS. (a) Basic photonic lattice configuration for the beam shaping problem. (b) Best possible trade-off between the
amplitude and the phase profile of the beam in the beam shaping problem[109]. (c) The |Ez| field profile (arbitrary units) and comparison of orthogonal polarization
components along target plane of optimized TM polarized Gaussian beam. (d) The |Hz| field profile (arbitrary units) and comparison of orthogonal polarization
components along target plane of optimized TE polarized Gaussian beam[110].
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is discarded. At this time, an alternate perturbation (of the oppo-
site sign) may be applied and the FOM is re-evaluated. This per-
turbation cycle continues until all the parameters have been
addressed. This completes one iteration of the DBS algorithm.
Such iterations are continued until the FOM converges to a sta-
ble value. An upper bound on the total number of iterations and
a minimum change in FOM are defined to enforce numerical
convergence[113–117].
The algorithm provides an effective approach to designing

on-chip nanophotonic devices, such as the design of diffractive
optics[117–119], nanophotonics for light trapping[114,116], cou-
plers[120], computationalmicroscopy[121], free-space polarizers[115],
polarization beam splitter[113,122], optical modulator[123], the inte-
grated cloak[124], mode router[125–127], and power splitters[128,129].
Several typical devices designed by themodified version of theDBS
algorithm are introduced below. Shen et al. applied the nonlinear
optimization to design a free-space-to-waveguide coupler, polari-
zation beam splitter, and cloak[113,120,124], as shown in Fig. 25.
Figure 25(a) is a free-space to multi-mode waveguide coupler
and polarization splitter, and panels a, b, and c in Fig. 25(a)
are the structure diagram, simulated time-averaged intensity distri-
bution for light polarized along X and that polarized along Y,
respectively[120].
In the device designs, they made use of the concept of free-

form metamaterials, and found that allowing the geometry of
the metamaterials to be freely optimized enables devices that
can be highly functional. Moreover, nanopatterning enables
one to engineer the refractive index in space at a deep

sub-wavelength scale. In this way, devices that achieve high-
efficiency mode conversion in an extremely small area
become feasible. Then they designed a polarization beam splitter
with a footprint of 2.4 μm × 2.4 μm in the same way, which is
shown in Fig. 25(b), and the simulated steady-state intensity
distributions for TE and TM polarized light at the design
wavelength of 1550 nm are shown in Figs. 25(c) and 25(d),
respectively[113].
With the development of the photonic integrated circuit, a

higher density integration is required. One of the options to
increase integration density is to decrease the spacing between
the individual devices. An optical waveguide in the plane of
the photonic integrated circuit is one of the most fundamental
structures. However, the integration density of the waveguide is
limited by the leakage of light from one waveguide to its neigh-
bor, if the spacing between them is too small. The DBS algorithm
is employed to design the integrated cloak with a footprint of just
a few micrometers to decrease this spacing without considerably
increasing cross talk[124]. Take the nanophotonic cloak that can
render a waveguide invisible to a neighboring micro-ring reso-
nator, for example. In most applications, light is coupled into
the resonator via a waveguide that is placed in close vicinity
to the ring. However, if another waveguide is placed close to
the micro-ring, the two optical components would work as a
coupled system with functionality that is different from that of
either one working independently, as is shown in Fig. 25(e).
Shen et al. designed a nanophotonic cloak that allows a wave-
guide to be placed at a gap of only 300 nm from the micro-ring
and essentially renders the waveguide invisible to the micro-
ring. The structure diagram of the device and the steady-state
intensity distribution are shown in Fig. 25(f). Another option
to increase integration density is to combine the function of
multiple devices into a single compact device. Liu et al. designed
a mode-division multiplexing circuit consisting of a multiplexer,
a crossing, and a demultiplexer[126].
The DBS algorithm was used to optimize the structure of

nanohole distribution. The microscope image of the circuit
and a four-stage cascaded crossing circuit is shown in Fig. 26(a),
and the zoom-in SEM image of the nanostructured crossing is
shown in Fig. 26(b). The transmission spectra of the cascaded
crossing are measured and normalized, as shown in Fig. 26(c).
Moreover, Han et al. theoretically designed three 1 × 2 power
splitters based on photonic-crystal-like metamaterial structure
using the DBS algorithm[129]. The simulated results of the
1 × 4 power splitter are shown Figs. 26(d) and 26(e).
The DBS algorithm is a simpler iterative algorithm for the

design of nanophotonic devices. The discrete structure gener-
ated by DBS algorithms is more favorable to the fabrication
using traditional manufacturing techniques like focused ion
beam milling or electron beam lithography. However, the
DBS algorithm has some limitations. First, the algorithm is guar-
anteed to converge, but not necessarily to a global minimum.
It inherently produces a suboptimal result, as the DBS algorithm
converges to the first local minimum during the search process.
Second, it is computationally expensive and suitable for discrete
solution space and small parameter space. The cost of the

Fig. 24. The flow chart of DBS algorithm[112].
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calculation and the probability of the DBS algorithm falling into
the local optimal value will increase as the search space increases.
Third, the algorithm is sensitive to the starting point. In view of
the above analysis, there is an urgent need to develop an algo-
rithm to design the optimal and multi-function integrated
device.

6.2 Topology optimization

Topology optimization is amathematical method for optimizing
the distribution of materials in a given area according to given

loads, constraints, and performance indicators. Topology opti-
mization is one of the most promising aspects of structural opti-
mization, with greater design freedom and space. Continuous
topology optimization methods include the homogenization
method, variable density method, level set method, etc. The
homogenization method uses the finite element method to dis-
cretize the design area, and assumes that the entire design space
is a microstructure unit (unit cell) similar to the “stomata dis-
tribution”. The unit cells are evenly distributed and of the same
size before the optimization starts. In the process of topology
optimization, the unit cell density distribution changes; that

Fig. 25. Nanophotonic devices designed by DBS. (a) Panel a, structure diagram of a free-space to multi-mode waveguide coupler and polarization splitter; panels b
and c are simulated time-averaged intensity distribution for light polarized along X and that polarized along Y, respectively[120]. (b) The structure diagram of a
polarization splitter. (c) and (d) The simulated steady-state intensity distributions for TE and TM polarized light at the design wavelength of 1550 nm, respec-
tively[113]. (e) and (f) Reference coupled system and the cloak for micro-ring resonator[124].
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is, the unit cell density in the high stress area becomes larger
while the unit cell density in the low stress area becomes smaller.
A load-bearing structure was formed during the optimization
process. This structure is “dense” in high-stress areas and
“sparse” in low-stress areas. When the iterative calculations
are all completed, define a reasonable minimum density, and
then remove the area in the design space where the unit cell den-
sity is lower than this minimum to produce a weight-
optimized load-bearing structure with the highest material
effect. The variable density method expresses the corresponding
relationship between the relative density of the element and the
elastic modulus of the material in the form of a density function
of continuous variables, seeks the best force transmission route

of the structure, and optimizes the distribution of materials in
the design area. It has the advantages of easy program imple-
mentation, high calculation efficiency, and calculation accuracy.
However, the result of this method has a fuzzy boundary. The
level set method is discussed below. The topology optimization
of discrete structures is mainly based on the basic structure
method, using different algorithms to solve the problem.
Topology optimization is more and more widely used due to
its advantages[130,131]. In the work of Chen et al., topology opti-
mization was performed, as shown in Fig. 27(a), and the metal
nanoparticle dimer was designed in reverse, with the goal of
optimizing the near-field enhancement factor in the gap below
10 nm. By optimizing the material layout within a given design

Fig. 26. Nanophotonic devices designed by DBS. (a) The top-view microscope image of the mode-division multiplexing circuit (top), and the lower left corner is the
microscope image of the four-cascaded crossing[126]. (b) The scanning electron microscope image. (c) The measured transmission spectra for the mode-
division multiplexing circuit. (d) The top view of the 1 × 4 power splitter (top), and the bottom is optical field distribution[129]. (e) Excess loss of each
output port.
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space, the topology optimization algorithm can generate a
plasma nanodimer of two heart-shaped particles with convex
and concave features, as shown in Fig. 27(b)[132].
The level set method is a numerical technique for interface

tracking and shape modeling. One of the advantages of the level
set method is that the curves and surfaces can be numerically
calculated on a Cartesian grid without parameterizing curves
and surfaces (this is the so-called Eulerian approach).
Another advantage of the level set method is that it is easy to
track the topology change of the object. For example, an object
may be divided into two parts or combined into one, or a new
cavity or new entity may be created. All of these make the level
set method a powerful tool for time-changing objects modeling,
such as expansion of airbag and oil droplets falling into the
water. However, the level set equation needs to be updated with
the PDE equation. During the process, the level set equation
needs to be reset to ensure the continuous update of the PDE,
which will greatly reduce the optimal convergence speed, or even
fail to converge.
The optimal design of photonic bandgaps for 2D square lat-

tices is considered[133]. The level set method can represent the
interface between two materials with two company’s dielectric
constants[134].

Let ϵ =
�
ϵ1 for fx∶φ�x� < 0g
ϵ2 for fx∶φ�x� > 0g

[135]. The level set function

is updated by solving the Hamilton–Jacobi equation φt �
Vj∇φj = 0, where the velocity V gives the correct direction to
optimize the desired design. The optimization problems to be
solved here are as follows.

1. Maximize the bandgap in TM: supφ
�
infα ω

m�1
TM −

supα ω
n
TM

�
:

2. Maximize the bandgap in TE: supφ
�
infα ω

m�1
TE −

supα ω
n
TE

�
:

The main approach is as follows[133].

1. First choose the initial ϵ and decide which bandgap we
want to maximize.

2. For i = 0, 1, 2, : : : , find the velocity V that gives an ascent
direction and a step size ti to yield an increase in the objec-
tive bandgap. Use the level set method to update φ and
then obtain the new ϵ.

The evolution of the dielectric distribution is shown in
Fig. 28(a). The change of bandgap as the number of iterations
increases is shown in Fig. 28(b). The final band structure for
maximizing the bandgap between ω1

TM and ω2
TM is shown in

Fig. 28(c).
The level set method can calculate the curves and surfaces in

the evolution process numerically on the Cartesian grid without
parametric curves and surfaces. It has a larger application space,
and it is believed that the level set algorithm can solve more
problems.

6.3 Monte Carlo method

The Monte Carlo method, also known as a statistical simulation
method, is a very important numerical calculation method
guided by the theory of probability and statistics, which was pro-
posed in the mid-1940s due to the development of science and
technology and the invention of electronic computers. The
Monte Carlo method is a method that uses random numbers
to solve many computing problems. The Monte Carlo method

Fig. 27. (a) The structure of the topology optimization algorithm used in the work. (b) The 3D model of gold nanoparticle dimer with predefined key parameters in
geometry and material.
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is widely used in financial engineering, macroeconomics, com-
putational physics, and other fields[136,137].
The Monte Carlo method usually solves mathematical prob-

lems by constructing random numbers that conform to certain
rules. The Monte Carlo method is an effective method to find
numerical solutions for those problems that are too complex
to obtain analytical solutions or have no analytical solutions
at all. Themost common application of theMonte Carlomethod
in mathematics is the Monte Carlo integral[137].
Applying the Monte Carlo method to practical problems has

two main parts.

1. When the Monte Carlo method is used to simulate a proc-
ess, it is necessary to generate a random variable of a prob-
ability distribution.

2. The numerical characteristics of the model are estimated
by the statistical method, and the numerical solutions of
practical problems are obtained[138].

With the help of computer technology, the Monte Carlo
method has many advantages; it is simple and fast, eliminating
the need for complicated mathematical derivation and
calculation. Moreover, the Monte Carlo method has a strong
adaptability, and the complexity of the problem geometry
has little influence on it. It is believed that the Monte Carlo
method will have more applications in the field of photonic
nanometers.

7. Summary and Outlook

In this review article, we extensively discuss a variety of intelligent
algorithms including deep learning methods, the gradient-based
inverse design method, swarm intelligence algorithms, individual
inspired algorithms, and other intelligent algorithms, as well as
nanophotonic devices designed using these algorithms. Some
representative examples are used to analyze various intelligent
algorithms for different situations. In many practical applica-
tions, intelligent algorithms are practical methods to deal with
various challenging problems. The advantages, disadvantages,
characteristics, and suitable devices of the algorithms discussed
in this paper are presented in Table 1.
Compared with the traditional design method, the intelligent

algorithm is universal and efficient. For example, the advantages
of deep learning are that once trained it takes less time (i.e., less
computational cost) than traditional algorithms, and is more
likely to find better optimization solutions. In addition, com-
pared with traditional algorithms, the deep learning method
can realize inverse design more easily. ANN has many typical
structures and strong flexibility. According to the design
requirements of the equipment and many problems in the train-
ing process, we can choose the appropriate neural network for
optimal design. First, the design of nanophotonic devices is non-
convex, and there is no guarantee that the designed devices are
optimal. Second, preparing training sets and training neural net-
works require a lot of computing and time costs, especially when

Fig. 28. Nanophotonic devices designed by the level set method. (a) The evolution of the dielectric distribution[133]. (b) The bandgap versus the iteration. (c) The
final band structure with the largest bandgap between ω1

TM and ω2
TM.
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Table 1. Comparison of Various Intelligent Design Algorithms.

Intelligent
Design

Algorithms Advantages Disadvantages Unique Features
Suitable Design for Photonic

Structures and Devices

1. Deep learning
methods

Spend less time than
traditional algorithms

(after training).
More likely to find better
local optimal solutions.
Many typical structures
and strong flexibility.
Realize inverse design

more easily.

Take a lot of computational and time
cost for preparation and training.

Difficult to exploit the trained ANN for
further analysis.

Poor performance when dealing with
problems with few samples.

Great for dealing with
problems that training set is

easy to generate.
Ability of transfer learning

(albeit immature).
Some hyperparameters need

to be tweaked.

Nanoparticle[51], power splitter[16,23],
optical spectrum[34,37,50,52],

metamaterial[17], metasuface[21,49]

2. Gradient-
based inverse
design algorithm

Large parameter space,
high computational

efficiency.

Exhibit a continuous topography,
produce a local optimal solution.

Gradient-based, large
parameter space.

Multi-channel devices[62],
router[60–62,64,65,67], coupler[63],

mode converter[62], accelerators[66],
switch[68]

3. Genetic
algorithm

Suitable for solving
complex optimization
problems, concurrency,

extensibility.

Low search efficiency in late evolution,
premature convergence.

Large coverage, self-
organization, self-adaptation,

self-learning.

Coupler[78], metamaterial[6],
nanoparticle[80], router[79]

4. Particle
swarm
optimization

Fast convergence speed,
easily understood, parallel

computing.

High requirement for parameter
setting.

Real-time change of
perception.

Waveguide[5], nanoparticle[87]

5. Ant colony
algorithm

Suitable for combinatorial
and continuous function
optimization, intuitive.

High time cost. Usually combined with other
algorithms.

Photovoltaic collector[95]

6. Simulated
annealing
algorithm

Robustness of a random
initial guess, simple
structure, parallel

computing.

Sensitive to parameters,
low efficiency.

Converge with the drop of
temperature.

Coupler[103], switch[99],
metamaterial[139]

7. Hill-climbing
algorithm

Easily understood, avoid
traversal in solution

space.

Unable to break out the local optimum. One of the most basic
heuristic algorithms.

Nano-cavity[104]

8. Tabu search
algorithm

Suitable for combinatorial
optimization, fast

convergence speed.

Premature convergence, high
requirement for parameter setting.

Parallel tabu search can
improve efficiency.

Polarization filter[110], beam shaping
device[109]

9. Direct binary
search

Discrete structure
generated by DBS
algorithms is more
favorable to the
fabrication.

Suitable for small parameter space,
computationally expensive, sensitive to

the starting point.

A simpler iterative algorithm. Coupler[120], computational
microscopy[121], polarizer[115],
router[113,122,128,129], optical

modulator[123], integrated cloak[124]

10. Topology
optimization

Large degree of freedom
in design, high
sustainability.

Complex shapes are difficult to
manufacture.

Optimize the material
distribution.

Band structures[133]

11. Monte Carlo
method

Strong adaptability. Assumptions need to be fair. Solve problems without
analytical solutions.

Optical imaging[140]
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dealing with complex learning tasks. Third, further analysis
using trained neural networks is difficult because ANN’s learn-
ingmechanisms (note that they are sometimes useful) operate as
black boxes. However, the useful information about the features
of photonic structures can be extracted by introducing proper
techniques such as latent space[22]. Fourth, a stronger capacity
for migration learning is needed to cope with changing situa-
tions, although this ability is being developed to demonstrate
its power in the design of nanophotonic devices. Finally, in
the case of fewer training samples, traditional methods may per-
form better than deep learning methods.
The gradient-based inverse design method can automatically

design nanophotonic devices and only requires the user to input
high level parameters. This method can provide large parameter
space and design devices using full space parameters of manu-
facturable devices, which often requires less simulation than GA
or PSO because they do not rely on parametric scanning or ran-
dom perturbations to find their minima. This method can be
used to design any passive, linear photonic device.
However, the implemented design usually presents a continu-

ous terrain, and some very small structural components may be
formed during the inverse design process, which presents a chal-
lenge to sample making. In addition, the gradient-based inverse
design method usually produces only local optimal solutions
and cannot realize the true global optimal solution.
Swarm intelligence algorithms have certain robustness and

strong evolutionary or search ability. GA can not only solve
single-objective optimization problem, but also play a greater
role in multi-objective optimization problems. It has the char-
acteristics of group search and is suitable for solving complex
optimization problems, such as the need to optimize multiple
system parameters at the same time, and some other application
problems may not have clear and unique optimal values.
Moreover, GA is scalable and easy to be combined with other
algorithms. However, the search efficiency of GA in the later
stage of evolution is slightly lower, and it is prone to premature
convergence. Although the local search ability of the genetic
algorithm is poor, it is often used in combination with other
algorithms to improve its performance due to its easy parallel
implementation. PSO has a fast speed of approaching the opti-
mal solution, which can effectively optimize the parameters of
the system, and the process is simple and easy to understand.
The advantage of PSO is that it can be applied to continuous
function optimization problems. The main drawback of this
method is that it requires high parameters. It is easy to produce
premature convergence when dealing with complex multiple
optimal value search problems, and its local optimization ability
is poor. PSO falls into localminimum, which ismainly due to the
loss of diversity in the search space. We can improve it by com-
bining it with other algorithms or adding mutation operations.
PSO has been used to optimize nanostructures and design nano-
photonic devices. It can be used to optimize multidimensional
problems. The ACA is suitable for combinatorial optimization
and continuous function optimization. The whole algorithm
process is intuitive and easy to understand, but it takes a long
time to solve. ACA has strong robustness in solving performance

and is easy to be implemented in parallel. Therefore, other algo-
rithms are usually combined with ACA to improve the perfor-
mance of the algorithm, to design more ideal nanophotonic
devices.
Individual inspired algorithms can give a better solution in a

certain acceptable time, but cannot guarantee it is optimal. The
calculation process of SAA is simple, and it has strong univer-
sality and robustness. However, it is very sensitive to customized
parameters, especially the initial temperature. When faced with
a large number of parameters that need to be optimized, SAA
randomly selects new solutions from the solution space, thus
making the performance weak. In the case of many unknown
parameters, the search efficiency and the possibility of finding
the optimal solution will decrease. The climbing algorithm is
more intuitive, because the memory requirement is small. But
it cannot solve the problem of large-scale multi-constraint.
The TS algorithm has fast convergence speed and few iteration
times, but the results depend on the initial solution and the
adjacent.
The DBS algorithm is a simple iterative algorithm for design-

ing nanophotonic devices. The discrete structure generated by
the DBS algorithm is more conducive to the traditional manu-
facturing techniques such as focused ion beam milling or elec-
tron beam lithography. However, the DBS algorithm has some
limitations. First, the algorithm guarantees convergence, but not
necessarily to the minimum. When it converges to the first local
minimum during the search, it inherently produces a subopti-
mal result. Second, it is suitable for discrete solution space
and small parameter space due to its large computation. The cal-
culation cost and the probability of falling into the local optimal
value will increase with the increase of search space. Third, the
algorithm is sensitive to the starting point. Topological optimi-
zation has more design freedom and design space, among which
the level set method used in designing of nanophotonic devices
can be used for numerical calculation of curves and surfaces in
the evolution process on the Cartesian grid of parametric curves
and surfaces, but the process is more complex and requires a cer-
tain mathematical foundation. The level set equation needs to be
updated with a partial differential equation and, in the middle,
the level set equation needs to be reset to ensure the continuous
update of the partial differential equation, which greatly reduces
the optimal convergence rate or even fails to converge. The
Monte Carlomethod has strong adaptability and can solve prob-
ability and statistics problems easily and quickly. However, the
number of samples must be large enough, and the calculation
process is long.
As the need for nanophotonic devices to achieve more

functions is further strengthened, the intelligent algorithms,
especially the more popular method – the deep learning
method –with higher efficiency and better effect[54–56], will con-
tinue playing a significant role in the designing of nanophotonic
devices to implement complex functions and improve the per-
formance of nanophotonic devices. This will provide an avenue
for the realization of photonic chips in the future. As for the uti-
lization of intelligent algorithms, we think during the designing
process of nanophotonic devices, multiple algorithms can be
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adopted simultaneously to provide efficient and optimal solu-
tions, rather than just one algorithm. In addition, when too
many algorithms are difficult to choose from, the more reports
some algorithms appear in, the more frequently they have been
used, which may be a reference for similar problems.
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Photon. 6, 1168 (2019).

52. M. Hutson, “Migrating knowledge between physical scenarios based on arti-
ficial neural networks,” Science. 360, 845 (2018).

53. S. Jiao, Y. Gao, J. Feng, T. Lei, and X. Yuan, “Does deep learning always out-
perform simple linear regression in optical imaging?”Opt. Express 28, 3717
(2020).

54. E. Goi, Q. Zhang, X. Chen, H. Luan, and M. Gu, “Perspective on photonic
memristive neuromorphic computing,” PhotoniX 1, 3 (2020).

55. T. Chen, J. van Gelder, B. van de Ven, S. V. Amitonov, B. de Wilde, H. Ruiz
Euler, H. Broersma, P. A. Bobbert, F. A. Zwanenburg, and W. G. van der
Wiel, “Classification with a disordered dopant-atom network in silicon,”
Nature 577, 341 (2020).

56. Y. Kiarashinejad, S. Abdollahramezani, and A. Adibi, “Deep learning
approach based on dimensionality reduction for designing electromagnetic
nanostructures,” NPJ Comput. Mater. 6, 12 (2020).

57. T. Han, C. Liu, W. Yang, and D. Jiang, “Deep transfer network with joint
distribution adaptation: a new intelligent fault diagnosis framework for
industry application,” ISA Trans. 97, 269 (2020).

58. M. Wang and W. Deng, “Deep visual domain adaptation: a survey,”
Neurocomputing 312, 135 (2018).

59. K. Chadan, P. C. Sabatier, and R. G. Newton, Inverse Problems in Quantum
Scattering Theory (Springer Science & Business Media, 1988).

60. A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained
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